5 min read
How to Write YouTube Scripts
If you're a seasoned YouTuber, you're well aware of the vital role a video script plays in creating engaging and coherent content. A well-crafted...
2 min read
Joy Youell
:
Aug 24, 2023 11:08:35 AM
LinkedIn is a platform known for less fluff, providing meaningful and relevant content to enhance professional growth and networking.
Continuing to stay relevant as the platform grows means continuous improvement in how the platform delivers content based on each member's unique goals and preferences.
The tech team over there recently released info on efforts to modernize architecture and improve performance.
They're claiming the enhancements will improve feed content and also hold promise for broader applications across LinkedIn's large-scale modeling endeavors.
In this blog post, we'll summarize the company's announcement about the new tech advances, including a model to handle a larger number of parameters that they claim results in a notable upgrade in content quality.
By harnessing the power of deep learning and large datasets, they're supposedly poised to deliver even more personalized feed content to members.
The Homepage Feed on LinkedIn generates billions of datasets daily over millions of sparse IDs.
To enhance the performance and personalization of the feed, they've incorporated the representation of sparse IDs as features into their recommendation algorithms.
By transforming these features into embeddings, using lookup tables, they say they can capture essential relationships within the data and significantly enhance computational efficiency.
Incorporating member interaction history into the search model has been pivotal for platforms like this.
Notably, LinkedIn aggregates embeddings of members that a particular user has interacted with.
This comprehensive representation, combined with individual ID embeddings, provides a holistic view of member preferences, enriching content recommendations.
Of course, for wild, spaghetti-wall style networking attempts, this could totally distort someone's feed. So, word to the wise and all that.
LinkedIn's renewed focus on personalized embeddings has brought focus to dense features. They will now be incorporating gating mechanisms to hidden layers, which should streamline information flow and improve the learning process, resulting in more accurate predictions.
(Does this sound like predictive intelligence to anyone else?)
Transitioning from external serving to in-memory serving is a new effort that they say will significantly improve feature delivery and model fidelity. This strategic shift has provided more iteration flexibility and feature fidelity, offering a smoother user experience.
By adopting minimal perfect hashing, the company is striving to reduce memory usage for model artifacts. This approach, while introducing a slight latency trade-off, has proven to be highly efficient in managing large-scale models.
As LinkedIn scales its model sizes and explores new territories, time will tell if things like GPU serving, intelligent model routing, and advanced feature embedding strategies shift the user experience or the strategies marketers need to win on the platform.
5 min read
If you're a seasoned YouTuber, you're well aware of the vital role a video script plays in creating engaging and coherent content. A well-crafted...
4 min read
'Tis the season when social media surges with engagement, and as seasoned social media strategists, we know exactly why. It's the time when the stars...
3 min read
Maintaining consumer engagement is crucial for brands. The focus has often been on how to attract and retain customers, but a recent study...
2 min read
LinkedIn is bolstering its newsletter creation capabilities, responding to the increasing number of members signing up for newsletters within the app.
9 min read
Believe it or not, LinkedIn is quickly approaching its 20th birthday. With over 800 million users spread across 200+ countries, the platform has...
3 min read
Let's talk about LinkedIn. The platform traditionally associated with professional networking is undergoing a metamorphosis, attracting a new...